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2 Departamento de Fı́sica Teórica I, Universidad Complutense, 28040 Madrid, Spain

Received 25 November 2002
Published 19 March 2003
Online at stacks.iop.org/JPhysA/36/L197

Abstract
We apply several quantization schemes to simple versions of the Chinos game.
Classically, for two players with one coin each, there is a symmetric stable
strategy that allows each player to win half of the times on average. A partial
quantization of the game (semiclassical) allows us to find a winning strategy
for the second player, but it is unstable w.r.t. the classical strategy. However,
in a fully quantum version of the game we find a winning strategy for the
first player that is optimal: the symmetric classical situation is broken at the
quantum level.

PACS numbers: 03.67.−a, 03.67.Lx

1. Introduction

In a typical scene at a Spanish restaurant, a small group of companions-at-table gather at the
bar extending their arms, each with their clenched hands holding a few coins hidden inside.
They are gambling for the after-lunch round of coffees. One after another they tell a number,
then open their hands showing their coins one another and count them all. Often, one of the
pals smiles meaning that s/he guessed the correct total number of coins. After a given number
of plays, the player scoring the worst pays for all coffees. This gambling game is known as
the Chinos game and has been a traditional way in Spain to decide who is in charge of the
coffees’ check3.

Interestingly enough, this simple-minded guessing game exhibits a rich variety of patterns
with complex behaviour that has been used to model strategic behaviour in some social and
economic problems, such as financial markets and information transmission [1]. This is an
example of a non-cooperative game, for each player seeks to maximize her/his chances of
guessing correctly, and at the same time to minimize the possibilities of her/his opponents.

3 We do not claim that the Chinos game originates from Spain, but the word chinos is a deformation of chinas
meaning pebbles in Spanish.
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Recently, a new field for game theory has emerged in the form of quantum games with
the goal of taking advantage of quantum effects to attain a winning edge [2–7]. The blending
of quantum mechanics with game theory opens novel strategies based on exploiting the
peculiarities of quantum behaviour, and it has already stimulated a number of new ideas, e.g.,
in the prisioners’ dilemma there exists a quantum strategy that allows both players to escape
the dilemma [3].

In this paper our aim is twofold: firstly, to define quantum versions of the Chinos game
such that they reduce to the classical game as a limiting case. Secondly, to analyse the new
quantum versions in order to find how the classical strategies behave under quantum effects,
and if there exist new quantum winning strategies without classical analogue.

2. Classical Chinos game

In the classical formulation, a number Np of players enter the game, each having access to
Nc coins that they draw and hide in their hands at each round of the game. Next, each player
makes a guess about the total number of coins held at that round, with the constraint that no
player can repeat the number guessed by the previous players. Thus, the outcome of a given
round may be either that one player wins or failure for everyone. As a remark, the heads
and tails of the coins play no role in the Chinos game, so that they can be simply regarded as
pebbles: only their number counts.

Let D := {0, 1, . . . , Nc} be the space of draws and G := {0, 1, . . . , NpNc} be the space
of guesses for the first player. Each player’s movement has two parts: (1) drawing coins;
(2) guessing the total number of coins altogether. Let us denote by M := (d, g) one of these
movements, with d ∈ D and g ∈ G. The space of movements isM := D×G for the first player.
The following players have a reduced guess spaceG′

(i) := G−{d(1), . . . , d(i−1)}, i = 2, . . . , Np.
A possible strategy S is an ordered sequence of movements S := (M1,M2, . . . ,Mr)

selected with some criteria or randomly, and played during the r rounds that the whole
game takes.

We shall denote by CCG(Np, Nc) a classical Chinos game of Np players and Nc coins.
The exhaustive analysis of such a generic game turns out to be too complicated [1], thus
we shall concentrate on the case of only Np = 2 players for which we have the following
result:

First result. Let us denote the classical strategies for each player i = 1, 2 by S(i) :=
(M(i),1,M(i),2, . . . ,M(i),r ). Then, the best strategy for player 1 is to choose movements
M(1),j , j := 1, 2, . . . , r with d(1),j randomly distributed and g(1),j = Nc,∀j , while the best
strategy for player 2 is to choose draws d(2),j at random. For r large enough, the result of the
game is even.

Proof. Since the Chinos game is a non-cooperative game, in this result we are assuming
that one of the main goals of player 1 is not to transmit any information to player 2 about
her/his values d(1),j . This can be achieved by choosing g(1),j = Nc irrespective of the number
that s/he draws. Moreover, players soon realize that as they cannot know in advance her/his
opponent strategy, the best strategy they can choose is to pick d(i),j , i = 1, 2; ∀j at random.
Now, let us call p1 the probability that player 1 guesses correctly the total sum they are after,
namely, aj := d(1),j + d(2),j , and similarly for p2. The quantities each player is interested in
maximizing are the normalized probabilities Pi := pi/

∑
i=1,2 pi . Thus, under these

circumstances, the probability that the second player guesses the correct sum is

p2 = 1 − p1

Nc
. (1)
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Then, the quantity player 2 wants to optimize is

P2 = 1 − p1

1 + p1(Nc − 1)
(2)

which is a decreasing function of p1, so that player 2 is interested in reducing p1 as much as
possible. However, player 1 can always resort to making random guesses about the number of
coins drawn by player 2. This amounts to a lowest bound on p1 given by p1,< := 1/(Nc + 1).
Therefore, player 2 should draw coins at random so that p1 cannot exceed p1,< and we end
up with an even situation given by4

P1 = P2 = 1
2 . (3)

�

We may view this result as a sort of ‘classical symmetry’ between players 1 and 2:

player 1 ←→ player 2 (4)

in the sense that there is no way to unbalance the result of the game if both players play at
random. Our goal is to define quantum extensions of the Chinos game to see if this symmetry
can be broken at the quantum level. We shall use this classical result as a guide to analyse
the behaviour of classical strategies when we enter the realm of the quantum extensions of the
game.

3. Semiclassical Chinos game

A first attempt at quantizing the Chinos game is to make a quantum extension of the space of
draws Dq while leaving the space of guesses G classical. We term this case semiclassical for
obvious reasons and denote by SCG(Np, Nc) a semiclassical Chinos game. The natural choice
forDq is to replace coins by quantum coins or qubits. Likewise, a quantum two-level system is
represented by a spin- 1

2 particle with states |↑〉, |↓〉 representing heads and tails, respectively.
However, we find that spins are not appropriate in the Chinos game since only the presence or
absence of coins in players’ hands matters. Hence, a more suitable way of representing qubits
is to use a boson system defined by bosonic creation/annihilation operators b†, b obeying
canonical commutation relations (CCR) [b, b†] = 1 and acting on the bosonic vacuum |0〉 in
the standard fashion: b|0〉 = 0, b†|n〉 = √

n + 1|n + 1〉, with |n〉 := (b†)n|0〉/√n!.
For simplicity, we shall consider first the case in which each quantum player has only one

coin, namely, SCG(Np, 1).
To each player i = 1, 2, . . . , Np we shall assign a set of operators O(θi, φi) parametrized

by the two angles characterizing a qubit state in the Bloch sphere. Thus, we introduce

Oi(θ, φ) := cos 1
2θi + eiφi sin 1

2θib
† 2θi, φi ∈ [0, 2π). (5)

These operators represent the quantum draw space Dq . At a given round j of the game,
each player selects one possible operator Oi(θ, φ) and at the end of the drawing process, we
represent the situation of having all players’ hands together by the following joint quantum
state

∣∣�(Np,1)

SCG

〉
:= N−1/2

Np∏
i=1

Oi(θ, φ)|0〉 =
Np∑
n=0

cn|n〉 (6)

4 If player 1 gives away some information about the coins s/he draws to player 2, then p2 >
1−p1
Nc

and P1 <
Ncp1

1−p1(Nc−1)
. As player 1 wants P1 > 1

2 , then it follows that p1 > 1
Nc+1 . In contrast, player 2 wants to minimize P1

by drawing coins at random so that p1 = 1
Nc+1 , bringing the situation back to the case (3).



L200 Letter to the Editor

Table 1. Probabilities for the outcomes of total coins 0, 1 and 2 in a SCG(2, 1) game. Rows
designate the draws of player 1 and columns the draws for player 2.

O
(1)
1 O

(1)
2 O

(1)
3 O

(1)
4

p(0) = 1 p(0) = 1
2 p(0) = 1

2 p(0) = 0

O
(2)
1 p(1) = 0 p(1) = 1

2 p(1) = 1
2 p(1) = 1

p(2) = 0 p(2) = 0 p(2) = 0 p(2) = 0

p(0) = 1
2 p(0) = 1

7 p(0) = 1
3 p(0) = 0

O
(2)
2 p(1) = 1

2 p(1) = 4
7 p(1) = 0 p(1) = 1

3
p(2) = 0 p(2) = 2

7 p(2) = 2
3 p(2) = 2

3

p(0) = 1
2 p(0) = 1

3 p(0) = 1
7 p(0) = 0

O
(2)
3 p(1) = 1

2 p(1) = 0 p(1) = 4
7 p(1) = 1

3

p(2) = 0 p(2) = 2
3 p(2) = 2

7 p(2) = 2
3

p(0) = 0 p(0) = 0 p(0) = 0 p(0) = 0

O
(2)
4 p(1) = 1 p(1) = 1

3 p(1) = 1
3 p(1) = 0

p(2) = 0 p(2) = 2
3 p(2) = 2

3 p(2) = 1

where N is a normalization constant and cn expansion coefficients. This state faithfully
represents the fact that what really counts is to guess the total sum aj = ∑Np

i=1 d(i),j ∈ G,
no matter what the partial contributions d(i),j of each player are. Moreover, the quantum

effects are clearly apparent since when the state
∣∣�(Np,1)

SCG

〉
is expanded in states |n〉, n ∈ G, each

coefficient cn receives contributions from each player that cannot be factorized out. Then,
with (6) we can compute the probability p(n) that any player obtains the value g = n after a
measurement, namely,

p(n) := ∣∣〈n∣∣�(Np,1)

SCG

〉∣∣2 = c2
nn!. (7)

With the present quantization scheme we have infinitely many possible draws. In practice,
it is a reasonable assumption to reduce the possible operator choices to a finite restricted set.
To be concrete, let us consider the case of Np = 2 players SCG(2, 1) and we select from (6)
the following reduced operator set

O1 := I O2 := 1√
2
(I + b†) O3 := 1√

2
(I − b†) O4 := b†. (8)

Note that operators O1 and O4 represent the classical draws of 0 and 1, respectively, while
O2 and O3 represent novel quantum superpositions of the classical draws. These conditions
represent a generic situation to analyse quantum effects in the Chinos game and we find the
following result:

Second result. (i) The strategy of drawing randomly from (8) becomes a winning strategy
for player 2. However, this strategy is unstable. (ii) The classical strategy of drawing randomly
between O1 and O4 is a winning strategy for both players (evenness) and is stable.

Proof. The analysis relies on table 1 showing the probabilities of obtaining 0, 1 and 2 coins
when player 1 draws operator O

(1)
i1

and player 2 draws O
(2)
i2

, i1, i2 = 1, 2, 3, 4, according to
(6)–(8). (i) Let us assume that players 1 and 2 both know the classical winning strategy of a
CCG and decide to make a straightforward generalization of it to the semiclassical case SCG.
Then, player 2 decides to play random draws among the four possible choices in (8). In this
situation, player 1 is left with a set of probabilities of getting a number of coins 0,1 and 2 given
by table 2, which are computed from table 1 by tracing out (averaging) over player 2. Hence,
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Table 2. Averaged probabilities of obtaining 0, 1 and 2 coins by player 1 in a SCG(2, 1) game
according to the draws Oi, i = 1, 2, 3, 4 s/he makes.

O
(1)
1 O

(1)
2 O

(1)
3 O

(1)
4

〈p(0)〉 = 1
2 〈p(0)〉 = 41

168 〈p(0)〉 = 41
168 〈p(0)〉 = 0

〈p(1)〉 = 1
2 〈p(1)〉 = 59

168 〈p(1)〉 = 59
168 〈p(1)〉 = 5

12

〈p(2)〉 = 0 〈p(2)〉 = 68
168 〈p(2)〉 = 68

168 〈p(2)〉 = 7
12

if the second player plays at random, the best choice for player 1 is to guess 1 (or 0) if s/he
draws O

(1)

1 , and 2 if s/he draws O
(1)

2 ,O
(1)

3 and O
(1)

4 . Thus, her/his total chances of winning
are

P1 = 1
4 × 1

2 + 1
2 × 68

168 + 1
4 × 7

12 = 53
112 < 1

2 . (9)

Therefore, the strategy of both players drawing at random is no longer an even strategy in this
case.

(ii) However, after a large number of rounds r, player 1 will realize that playing at random
is a winning strategy for her/his opponent and then s/he will seek to improve it. To do this,
s/he may resort to drawing only the classical choices . Then, from table 2, her/his chances of
winning are

P1 = 1
2 × 1

2 + 1
2 × 7

12 = 13
24 > 1

2 . (10)

This implies that the strategy in (i) is not stable. Likewise, player 2 will not be happy with this
new situation. S/he will try to match player’s 1 strategy by choosing the same purely classical
strategy. This fully classical situation is represented by the boxes at the outer corners of
table 1. Then we are led to P1 = P2 = 1

2 as the stable best strategy as in (3). �

This result means that if player 1 applys her/his knowledge of the classical game naively
by drawing at random from the four choices available, in the long run s/he will realize that
player 2 gets a winning edge.

4. Quantum Chinos game

Motivated by the previous semiclassical analysis, we propose a fully quantized version of
the Chinos game by quantizing both the draw space Dq and the guessing space Gq . We shall
define the quantum space of guesses Gq by allowing each player to make a guess about the final

quantum state
∣∣�(Np,1)

SCG

〉
in (6), and not merely about the possible outcomes of the total coins.

Thus, each player i will make a guess |�i〉, i = 1, 2, . . . , Np about the actual joint quantum
state they are dealing with. Moreover, we also extend quantumly the classical constraint that
the guess gi of player i cannot be the same as guesses gj for i < j . This is achieved by
imposing that the guess a player i can make is restricted to the subspace orthogonal to the
space spanned by the guesses of the previous players, namely,

Gq,i := span{|�1〉, . . . , |�i−1〉}⊥. (11)

With these new rules, we need to define a new function payoff: the gain for player i is

fi := ∣∣〈�i

∣∣�(Np,1)

SCG

〉∣∣2
. (12)

This way of quantizing the space of guesses is reminiscent of the theory of quantum algorithms
[8], and more specifically, from quantum searching algorithms [9, 10]. That this fully quantum
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version of the Chinos game includes the classical one is guaranteed since the latter appears as
a particular case when the only allowed guesses are |0〉, |1〉, . . . , |Np〉 (if the number of coins
per player is Nc = 1).

For simplicity, we shall consider the quantum case QCG(Np, Nc) for two players and one
coin each, and their quantum guesses comprise the finite set (8). We find the following result:

Third result. In a quantum Chinos game CCG(2, 1), the first player has a stable winning
strategy that allows her/him to win more than half the time.

Proof. A systematic analysis in this case of two players with one coin each proceeds as
follows. The space of draws for player 1 is Dq given by the reduced set (8). Then, player 1
draws O

(1)
i1

∈ Dq . The space of guesses for player 1 is Gq,1 := {
O

(1)
j1

O
(1)
k1

, 1 � j1 � k1 � 4
}
.

Next, player 1 makes a quantum guess gq,1 := O
(1)
j1

O
(1)
k1

∈ Gq,1. Now player 2 enters with

a draw O
(2)

i2
∈ Dq , and making a guess gq,2 := O

(2)

j2
O

(2)

k2
that, in order to be eligible, has

to be orthogonal to player’s 1 guess (11). To characterize this orthogonality condition, it is
convenient to introduce the following 16 × 16 matrix

G(j1,k1),(j2,k2) := 〈0|O†
j1
O

†
k1

Oj2
Ok2

|0〉√
Nj1k1

√
Nj2k2

Njk := 〈0|O†
jOk|0〉 (13)

which can be thought of as a metric on the quantum guess space. Thus, guess gq,2 is admissible
for the given guess gq,1 iff G(j1,k1),(j2,k2) = 0. Finally, for a pair of draws, the actual joint state
representing that round of the game is∣∣�(2,1)

QCG

〉 = N
−1/2
12 O

(1)
i1

O
(2)
i2

|0〉 (14)

while the function payoffs fi, i = 1, 2 for each player can also be read off from the metric
(13) as follows:

f1 = ∣∣G(j1,k1),(i1,i2)

∣∣2
f2 = ∣∣G(j2,k2),(i1,i2)

∣∣2
. (15)

Then, once we have computed the metric (13), it is possible to make an exhaustive study of
all the possibilities in this quantum Chinos gain and compute each player’s payoff for each
of those possibilities. We have performed this analysis with the following result: let us show
that if player 1 makes draws with equal probability among the choices O

(1)
2 and O

(1)
3 only (8),

then s/he is half-way to a winning position. The rest of the strategy is to set up the quantum
guesses as follows. When player 1 draws O

(1)

2 , s/he decides to always make the following
quantum guess

|�1〉 := N
−1/2
1 O

(1)
2 O

(1)
2 |0〉 = 1√

7
(|0〉 + 2|1〉 +

√
2|2〉) (16)

in which case, a possible guess for player 2 according to (11) would be

|�2〉 := N
−1/2
2 O

(2)

3 O
(2)

4 |0〉 = 1√
3
(|1〉 −

√
2|2〉), (17)

while if s/he draws O
(1)
3 , s/he decides to always make the following quantum guess:

|�1〉 := N
−1/2
1 O

(1)

3 O
(1)

3 |0〉 = 1√
7
(|0〉 − 2|1〉 +

√
2|2〉). (18)

Now, let us analyse the case when player 1 draws O
(1)
2 . Then, player 2 is left with the

four draws in the set (8) and the correspoding joint final states
∣∣�(2,1)

SCG

〉
that we collect in

table 3. When the first player draws O
(1)

3 , then we obtain a similar table by exchanging 2 ↔ 3.
From table 3 we see that under these circumstances, it is clear that player 2 will avoid

making the classical draws O
(2)
1 and O

(2)
4 , since they yield payoffs f1 = 9

14 > 1
2 , f1 = 16

21 > 1
2
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Table 3. Quantum guesses for player 2 when player 1 draws O
(1)
2 (8), and the corresponding joint

state (14) and gains for player 1 (15).

Quantum guess Joint state |�(2,1)
CCG 〉 Gain for player 1

O
(2)
1

1√
2
(|0〉 + |1〉) f1 = 9

14

O
(2)
2

1√
7
(|0〉 + 2|1〉 +

√
2|2〉) f1 = 1

O
(2)
3

1√
3
(|0〉 − √

2|2〉) f1 = 1
21

O
(2)
4

1√
3
(|1〉 +

√
2|2〉) f1 = 16

21

for the first player. Thus, player 2 is led to play only the draws O
(2)

2 and O
(2)

3 at random.
However, even in this case, player 1 will have a winning edge on average since the chances of
winning for the first player are

〈f1〉 = 1
2 × 1 + 1

2 × 1
21 = 11

21 > 1
2 . (19)

�

5. Conclusions

In game theory, players strive for even the slightest advantage that would tilt a game’s outcome
in their favour. We have found that the chances of winning for player 1 are better on average
than those of her/his opponent. We may interpret this result as the breaking of the symmetric
classical situation (4) at the quantum level:

player 1 ←→/ player 2. (20)

This advantage of the first player resembles a similar situation found in the PQ quantum
game [2]. In the present case, however, the correlation between players in the final result is
dynamically generated, i.e., it is a consequence of the player’s choice, and it is not encoded in
the initial state. In this respect, it also differs from the quantum generalization of other simple
games, such as the prisoner’s dilemma [3], or the minority game [11].
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